

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS				
QUALIFICATION CODE: 07BECO	LEVEL: 8			
COURSE CODE: AMI810S	COURSE NAME: ADVANCED MICROECONOMICS			
SESSION: JUNE 2022	PAPER: THEORY			
DURATION: 3 HOURS	MARKS: 100			

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	MR. PINEHAS NANGULA			
MODERATOR:	Dr Ernest Ngeh Tingum			

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

- 1. Scientific calculator
- 2. Pen and Pencil
- 3. Ruler

THIS QUESTION PAPER CONSISTS OF _4_ PAGES (Including this front page)

A bicycle manufacturing company is considering how to allocate a N\$15 million advertising budget between two types of tournaments: NPL football game and Namibian newspaper game. The following table shows the new bicycle that are sold when a given amount of money is spent on advertising during an NPL football game and a Namibian newspaper game. Let *P* be the amount of money devoted to advertising on NPL football games, *T* the amount of money spent on advertising on Namibian newspaper game, and C(P,T) the number of new bicycle sold.

Total spent	New sales from NPL	New sales from	Total Sales
(Millions)	football game	Namibian	
	*	newspaper game	*
N\$0.00	0	0	
N\$3.00	4	15	
N\$6.00	11	21	
N\$9.00	16	27	
N\$12.00	26	31	
N\$15.00	31	34	

i)	What is the objective function for this problem?	[1 mark]
ii)	What is the constraint?	[1 mark]

) What is the constraint:

[2 marks]

Write a statement of the constrained optimization problem.

iii)

- iv) Calculate total sales associated with each spending on NPL football games and
 Namibian newspaper game. [6 marks]
- v) Considering the information in the table, how should the manufacturer allocate its advertising budget? [5 marks]
- b) The demand function for beef is P = 100 0.5Q and the supply function for beef is $P = 90 + 0.5Q^2$. Use integration to calculate consumer's surplus and producer's surplus. [10 marks]

QUESTION TWO 2 [25 MARKS]

You have a choice to make between clothing (C) and food (F), the price of cloth is N\$45.00 per cloth and the price of food is N\$30.00 per kg. Your utility function is $U(F,C) = 20\sqrt{FC}$ and your income is N\$30000.00.

- a) If the price of food increases from N\$30.00 to N\$40.00 while the price of cloth and income remain the same, construct demand curve for food. Use a clear labelled graph to present your answer. Let food be on the x-axis.
- b) If the price of cloth increases from N\$45 to N\$55.00 while the price of food and income of consumer remain the same N\$30 and N\$30000.00 respectively, construct demand curve for cloth. Use a clear labelled graph to present your answer. Let food be on the x-axis.

[12.5 marks]

QUESTION THREE [25 MARKS]

A homogeneous products duopoly faces a market demand function given by Q = 50 - 0.2P. Firm A marginal cost is N\$15.00 and firm B marginal cost is N\$15.00.

a)

- i. What is Firm A's profit-maximizing quantity, given that Firm B produces an output of45 units per year? [2.5 marks]
- ii. What is Firm A's profit-maximizing quantity when Firm B produces 40 units per year? [2.5 marks]
- b) Derive the equation of each firm's reaction curve and then graph these curves.

[5 marks]

c) What is the Cournot equilibrium price and quantity per firm in this market?

[5 marks]

d) What would be the equilibrium price in this market if it were perfectly competitive?

[5 marks]

e) What would be the equilibrium price in this market if the two firms colluded to set a monopoly price? [5 marks]

QUESTION FOUR [25 MARKS]

Consumers derived utility from consuming good x and good y. Utility function is UX,Y) = $20X^{0.4}Y^{0.4}$ good y is a composite good ($P_y = N$1$), the price of good x is ($P_x = N$10.00$) and consumer income is (I = N\$500). Government would like to increase the consumption of good x with 60 per cent. Government can achieve this objective by either giving cash subsidy or a voucher that can only be used in the purchasing of good x. Government can only spend N\$300.00.

- a) Use a well labelled graph to represent the above information. [5 marks]
- b) Calculate optimal combination of good x and good y associated with each option. Which option will you recommend and why? [10 marks]
- c) If government has only N\$200.00 to spend to increase the consumption of good x, which option will you recommend? [10 marks]

All the best